23 research outputs found

    Hand Gesture Classification Using Grayscale Thermal Images and Convolutional Neural Network

    Get PDF
    Accepted manuscript.acceptedVersio

    Single-channel speech enhancement using implicit Wiener filter for high-quality speech communication

    Get PDF
    Speech enables easy human-to-human communication as well as human-to-machine interaction. However, the quality of speech degrades due to background noise in the environment, such as drone noise embedded in speech during search and rescue operations. Similarly, helicopter noise, airplane noise, and station noise reduce the quality of speech. Speech enhancement algorithms reduce background noise, resulting in a crystal clear and noise-free conversation. For many applications, it is also necessary to process these noisy speech signals at the edge node level. Thus, we propose implicit Wiener filter-based algorithm for speech enhancement using edge computing system. In the proposed algorithm, a first order recursive equation is used to estimate the noise. The performance of the proposed algorithm is evaluated for two speech utterances, one uttered by a male speaker and the other by a female speaker. Both utterances are degraded by different types of non-stationary noises such as exhibition, station, drone, helicopter, airplane, and white Gaussian stationary noise with different signal-to-noise ratios. Further, we compare the performance of the proposed speech enhancement algorithm with the conventional spectral subtraction algorithm. Performance evaluations using objective speech quality measures demonstrate that the proposed speech enhancement algorithm outperforms the spectral subtraction algorithm in estimating the clean speech from the noisy speech. Finally, we implement the proposed speech enhancement algorithm, in addition to the spectral subtraction algorithm, on the Raspberry Pi 4 Model B, which is a low power edge computing device.publishedVersio

    Multi-Channel Time-Frequency Domain Deep CNN Approach for Machinery Fault Recognition Using Multi-Sensor Time-Series

    Get PDF
    In the industry, machinery failure causes catastrophic accidents and destructive damage to the machines. It causes the machinery to stop and reduces production, causing financial losses to the industry. As a result, identifying machine faults at an early stage is critical. With the rapid advancement in artificial intelligence-based methods, developing automated systems that can diagnose machinery faults is necessary and challenging. This paper proposes a multi-channel time-frequency domain deep convolutional neural network (CNN)-based approach for machinery fault diagnosis using multivariate time-series data from multisensors (tachometer, microphone, underhang bearing accelerometer, and overhand bearing accelerometer). The wavelet synchro-squeezed transform (WSST) based technique is used to evaluate the time-frequency images from the multivariate time-series data. The time-frequency images are fed into the multi-channel deep CNN model for automated fault detection. The proposed multi-channel deep CNN model is multi-headed, considering the time-frequency domain information of each channel time-series data for automated fault detection. The proposed model’s performance is compared to benchmark models regarding testing accuracy, total parameters, and model size. Experiments have shown that the proposed model outperforms benchmark models regarding classification accuracy. The proposed multi-channel CNN model has obtained the accuracy and F1-score values of 99.48% and 99% for fault classification using time-frequency images of multi-sensor data. Finally, the proposed model’s performance is measured regarding inference time when deployed on edge computing devices such as the Raspberry Pi and the Nvidia Jetson AGX Xavier.publishedVersio

    Spectrum cartography techniques, challenges, opportunities, and applications: A survey

    Get PDF
    The spectrum cartography finds applications in several areas such as cognitive radios, spectrum aware communications, machine-type communications, Internet of Things, connected vehicles, wireless sensor networks, and radio frequency management systems, etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques for the construction of various radio environment maps (REMs). Following a brief overview on spectrum cartography, various techniques considered to construct the REMs such as channel gain map, power spectral density map, power map, spectrum map, power propagation map, radio frequency map, and interference map are reviewed. In this paper, we compare the performance of the different spectrum cartography methods in terms of mean absolute error, mean square error, normalized mean square error, and root mean square error. The information presented in this paper aims to serve as a practical reference guide for various spectrum cartography methods for constructing different REMs. Finally, some of the open issues and challenges for future research and development are discussed.publishedVersio

    Updating Thermal Imaging Dataset of Hand Gestures with Unique Labels

    Get PDF
    An update to the previously published low resolution thermal imaging dataset is presented in this paper. The new dataset contains high resolution thermal images corresponding to various hand gestures captured using the FLIR Lepton 3.5 thermal camera and Purethermal 2 breakout board. The resolution of the camera is with calibrated array of 19,200 pixels. The images captured by the thermal camera are light-independent. The dataset consists of 14,400 images with equal share from color and gray scale. The dataset consists of 10 different hand gestures. Each gesture has a total of 24 images from a single person with a total of 30 persons for the whole dataset. The dataset also contains the images captured under different orientations of the hand under different lighting conditions.publishedVersio

    Depth Camera based Dataset of Hand Gestures

    Get PDF
    The dataset contains RGB and depth version video frames of various hand movements captured with the Intel RealSense Depth Camera D435. The camera has two channels for collecting both RGB and depth frames at the same time. A large dataset is created for accurate classification of hand gestures under complex backgrounds. The dataset is made up of 29718 frames from RGB and depth versions corresponding to various hand gestures from different people collected at different time instances with complex backgrounds. Hand movements corresponding to scroll-right, scroll-left, scroll-up, scroll-down, zoom-in, and zoom-out are included in the data. Each sequence has data of 40 frames, and there is a total of 662 sequences corresponding to each gesture in the dataset. To capture all the variations in the dataset, the hand is oriented in various ways while capturing.publishedVersio

    Rate-Splitting Random Access Mechanism for Massive Machine Type Communications in 5G Cellular Internet-of-Things

    Get PDF
    The cellular Internet-of-Things has resulted in the deployment of millions of machine type communication (MTC) devices under the coverage of a single gNodeB (gNB). These massive number of devices should connect to the gNodeB (gNB) via the random access channel (RACH) mechanism. Moreover, the existing RACH mechanisms are inefficient when dealing with such large number of devices. To address this issue, we propose the rate-splitting random access (RSRA) mechanism, which uses rate splitting and decoding in rate-splitting multiple access (RSMA), to improve the RACH success rate. The proposed mechanism divides the message into common and private messages and enhances the decoding performance. We demonstrate, using extensive simulations, that the proposed RSRA mechanism significantly improves the success rate of MTC in cellular IoT networks. We also evaluate the performance of the proposed mechanism with increasing number of devices and received power difference. © 2021 IEEE

    A novel RACH mechanism for machine type communications in cellular networks

    No full text
    Machine type communications (MTC) is one of the key technologies in the upcoming 5G cellular networks. Under MTC, millions of MTC devices try to access the cellular base station. The existing random access channel (RACH) mechanisms are not suitable for such large number of devices. Thus, 3GPP has proposed an extended access barring (EAB) mechanism to address this problem. However, it has been shown in the literature that the RACH success rate of EAB can be improved further. Hence, in this work, we propose a novel RACH mechanism based on successive interference cancellation (SIC) that results in higher RACH success rate. Through extensive numerical results, we show that the proposed mechanism significantly outperforms the existing RACH mechanisms for MTC in cellular networks
    corecore